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a b s t r a c t

Packed chromatographic columns with the superficially porous particles (porous shell particles) guar-
antee higher efficiency. The theoretical equation of the Height Equivalent to a Theoretical Plate (HETP),
for columns packed with spherical superficially porous particles, was used for the analysis of the col-
umn efficiency for finite rate of adsorption–desorption process. The HETP equation was calculated by the
application of the moment analysis to elution peaks evaluated with the General Rate (GR) model. The
eywords:
uperficially porous particles
hell thickness
eneral Rate model
umped Kinetic Model

optimal solid core radius for maximum column efficiency was estimated for a wide spectrum of internal
and external mass transfer resistances, adsorption kinetic rate and axial dispersion. The separation power
of the shell adsorbent for two component mixture, in analytical and preparative chromatography, was
discussed. The conditions of the equivalence between the solutions of the General Rate model with slow
adsorption kinetic and the Lumped Kinetic Model (LKM) or the Equilibrium Dispersive (ED) model were
formulated.
quilibrium Dispersive model
ETP

. Introduction

In recent years the chromatographic columns technology was
volving in the direction of the use of smaller and smaller adsorbent
articles. The reduction of the size of adsorbent causes the decrease
f mass transfer resistances and increases the column efficiency.
urther, reduction of mass transfer resistances and increase of the
olumn efficiency was possible with introduction of superficially
orous particles [1–4].

The performance of chromatographic columns, filled with dif-
erent adsorbents, is conveniently compared on the basis of the
alues of their HETP. The theoretical equation of the HETP for
olumns packed with spherical particles was developed by Kucera
nd Kubin by application of the moment analysis to elution peaks
alculated with the General Rate (GR) model [5–7].

Moulijn et al. [8] extended the Kubin–Kucera model by incor-
orating surface migration to the GR model.

The moment analysis was used recently for developing a plate
eight equation for monolith columns [9].
All these equation were obtained for the totally porous adsor-
ent and a finite adsorption–desorption rate process. For the shell
dsorbent the theoretical equation of the HETP for instantaneous
dsorption–desorption was presented in [10].

∗ Tel.: +48 178651295; fax: +48 178543655.
E-mail address: kkaczmarski@prz.edu.pl
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This model was next extended to shell adsorbent with finite rate
of adsorption process by Li et al. [11].

The efficiency of the chromatographic column filled with a shell
adsorbent, for an infinite adsorption rate, was investigated theo-
retically in [10,12]. It was proven that the highest efficiency can be
obtained for shell thickness decreasing to zero. The more important
measure of a chromatographic separation power is the resolution
of components. Horváth et al. [12] has shown that the optimal shell
thickness should be finite to guarantee a maximum resolution. The
same conclusion was obtained analyzing maximum column pro-
ductivity [10] for preparative separation.

Li et al. [11] has optimized the value of inert core radius for finite
adsorption rate and linear adsorption isotherm. However, the opti-
mization was restricted for minimizing HETP for capacity factors
much higher than 1.

In the most of the papers devoted to chromatographic sepa-
ration it was assumed that adsorption process is infinitely fast.
However, in some cases adsorption rate is finite or it is convenient
to assume that the effective adsorption rate is finite.

The group of Rodrigues has modeled the separation of proteins
considering finite adsorption–desorption process [13–15].

Rizzi [16] reported two types of binding sites for microcrys-

talline cellulose triacetate that differ in their rates of adsorption
and desorption. According to his model, one type of a sorption site
is easily accessible, while the other site is sterically hindered.

Gebreyohannes and McGuffin [17] studied the separation
of coumarin solutes on tris-(3,5-dimethylphenyl carbamate)

dx.doi.org/10.1016/j.chroma.2010.12.093
http://www.sciencedirect.com/science/journal/00219673
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mylose in the polar-organic mode. They have found that
he adsorption–desorption rate is finite and that the rate of
dsorption is always greater than the rate of desorption. The
dsorption–desorption rates were found in interval between 0.04
nd 11 L s−1.

Puerta et al. [18,19] investigated adsorption kinetic of �-
actoglobulin on immunoadsorbents. The adsorption rate was
etween 0.13 and 1.5 L g−1 s−1 and desorption rate between 0 and
.5 ms−1 [19].

The aim of this work was to investigate the effect of
he shell thickness on the column efficiency for a finite
dsorption–desorption rate and any Henry constant. The optimal
olid core radius was calculated to achieve minimum HETP in differ-
nt process conditions. The analysis of the resolution in analytical
hromatography and productivity in preparative chromatography
n the shell thickness was presented.

Moreover, the conditions of the equivalence between the solu-
ions of the General Rate model with slow adsorption kinetic and
umped Kinetic or Equilibrium Dispersive model were formulated.

. Mathematical models

.1. General Rate, Equilibrium Dispersive and Lumped Kinetic
odel

The General Rate model used in the paper is the same as ana-
yzed in [20,21].

It will be convenient to present this model in dimensionless
orm.

The dimensionless parameters used here are the following:

x = z

L
, � = tu

Lεe
, R = r

Re
, y = C

Cr
, yp = Cp

Cr
, � = Ri

Re
,

Q = q

Cr
, Qs = qs

cr
, Pe = uL

DLεe
, St = 3kextLεe

Reu
,

Bi = kextRe

Deff
, ˚2 = R2

εk′
ads

Deff

(1)

The meaning of the symbols is given in the notation.
The mass balance equation for mobile phase can be written as

ollows:

ıy

ı�
+ ıy

ıx
= 1

Pe

ı2y

ıx2
− (1 − εe)

εe
St(t − tp(R = 1)) (2)

The mass balance equation for adsorbent is:

p
ıyp

ı�
+ (1 − εp)

ıQ

ı�
= St

3Bi

1
R2

ı

ıR

(
R2 ıyp

ıR

)
(3)

hen the adsorption–desorption process is not infinitely fast
hen the second term of Eq. (3) should be expressed by the
dsorption–desorption kinetic. Assuming Langmuir kinetic model,
he adsorption–desorption process in dimension form can be writ-
en as follows:

∂q

∂t
= kadscp(qs − q) − kdesq = kadsqs

(
cp − qcp

qs
− q

qsK

)
(4a)

r

∂q

∂t
= k′

ads

(
cp − qcp

qs
= q

H

)
(4b)
here k′
ads

= kadsqs is the effective adsorption rate constant.
In dimensionless form Eq. (4b) is given by:

∂Q

∂�
= ˚2St

3Bi

(
yp − Qyp

Qs
− Q

H

)
(5a)
A 1218 (2011) 951–958

or for linear isotherm

∂Q

∂�
= ˚2St

3Bi

(
yp − Q

H

)
(5b)

Eqs. (2)–(5) have to be coupled with the initial and boundary
conditions:

The initial conditions (at � = 0) are:
for 0 < x < 1; y(0, x) = y0;
for 0 < x < 1; 0 < R < 1;

yp(0, R, x) = y0
p(R, x); Q (0, R, x) = Q 0(R, x) (6)

The boundary conditions for the first mass balance equation are:
For � > 0; x = 0; y′

f
− y(�, 0) = − 1

Pe
ıy(�,0)

ıx

With y′
f

= yf for � ∈ [0, �p]
and with y′

f
= 0 for � > �p

For � > 0; x = 1

ıy(�, 1)
ıx

= 0 (7)

The boundary conditions for the second mass balance equation
are:

For t > 0; R = 1;
ıyp(�, R)

ıR
= Bi[y − y(�, R)]

For t > 0; R = 0;
ıyp(�, R)

ıR
= 0

(8)

The dimensionless mass balance equation for the Equilibrium
Dispersive or the Lumped Kinetic Model is given by:

ıy

ı�
+ (1 − εe)(1 − εp)(1 − �3)

εt

ıQ

ı�
+ εe

εt

ıy

ıx
= ı

ıx

(
1

Pea

ıy

ıx

)
(9)

where εt = εe + (1 − εe)εp(1 − �3)
Pea = uL

Daεe
and Da is the apparent dispersion coefficient.

The boundary and initial conditions are similar to those of the
GR model.

Mass balance (9) is coupled with Eq. (5a) or (5b) (LKM) or Lang-
muir or linear isotherm (ED model).

2.2. HETP of chromatographic columns packed with a shell
adsorbent

The performance of different chromatographic columns is con-
veniently compared on the basis of the values of their HETP. The
HETP can be calculated as a ratio of the first absolute (�1) and the
second central (�′

2) moments:

HETP
L

= �′
2

�2
1

(10)

The following equations for the first and second moment, cal-
culated with the scheme explained recently in [9] for the GR model
(Eqs. (2), (3), (5b), and (6)–(8)), can be obtained, assuming the Dirac
ı injection profile:

�1 = (1 + k1)
t

�
(11)

�′
2 =

(
t

�

)2
{

2
Pe

(1 + k1)2 + 2(k1)2

F ′

[
1
St

+ Bi

5St
∗

×
(

1 + 2� + 3�3 − �3 − 5�4

(1 + � + �2)2

)

+ 1
(1 − εp)(1 − �3)

(
kp

1 + kp

)2
3Bi

St˚2

]}
(12)



atogr. A 1218 (2011) 951–958 953

w

k

e

c

3

s
i
1
t
v
e
b
l
b
m
l
s
a

t
o

4

4

E
t

m
s
p
t

�

�

a
v
o
p
c
f

Table 1
Comparison of HETP calculated from the numerical solution of GR model and Eq.
(13).

Pe St Bi ˚ HETPa HETPb

100,000 1,000,000 0.1 0.01 0.00543 0.00544
50,000 10,000 1 0.1 0.0542 0.0542
50,000 10,000 1 10 0.000118 0.000118
K. Kaczmarski / J. Chrom

here

1 = F ′(εp + (1 − εp)H)(1 − �3); F ′

= 1 − εe

εe
; kp = 1 − εp

εp
H (12a)

Finally, combination of Eqs. (10)–(12) gives the plate height
quation:

HETP
L

= 2
Pe

+ 2
F ′

(
k1

1 + k1

)2 [
1
St

+ Bi

5St
∗

×
(

1 + 2� + 3�2 − �3 − 5�4

(1 + � + �2)2

)

+ 1
(1 − εp)(1 − �3)

(
kp

1 + kp

)2
3Bi

St˚2

]
(13)

In the following the value of HETP will be referenced to unite
olumn length.

. Data selected for theoretical calculations

The performance of chromatographic columns, packed with
hell particles, was investigated for a wide range of the changeabil-
ty of dimensionless numbers. The Stanton number was taken from
00 up to 1,000,000. Stanton number express the external mass
ransfer resistances. For St = 100 the mass transport resistances are
ery large. For St = 1,000,000 the mass transport resistances are
xtremely low. Peclet number characterizing the dispersion was
etween 100 and 100,000. The higher is the Peclet number the

ower is the peak broadening due to dispersion. Biot number was
etween 0.1 (a possible value for very low molecules with high
olecular diffusivity) and 1000 (this value can be obtained for

arge proteins). Thiele modulus was chosen between 0.01 (very
low adsorption kinetic) up to 100,000 (practically instantaneous
dsorption). Finally, the Henry constant was between 1 and 10,000.

To validate HETP model and analyze the column performance
he GR model, the LKM model and the ED model were solved with
rthogonal collocation on the finite elements method [22,23].

. Results and discussion

.1. Validation of the HETP model

The development of the HETP expression (Eq. (13)) is laborious.
q. (13) is equivalent to the expression developed by Li et al. except
he term (1 − εp) in the last part of Eq. (13).

To validate the correctness of the plate height equation, the GR
odel was solved numerically for several combination of a dimen-

ionless modulus: Bi, St, Pe and ˚. Next, for the obtained band
rofiles the first and second moments were calculated according
o the expressions:

1 =
∫

C(t)tdt∫
C(t)dt

(14)

′
2 =

∫
C(t)(t − �1)2dt∫

C(t)dt
(15)

nd finally the HETP was estimated from Eq. (10). The estimated

alue of HETP was compared with one calculated from Eq. (13). The
btained results are summarized in Table 1. All simulations were
erformed for εe = εp = 0.4, � = 0.8 and the Henry constant H = 5. As
an be seen, for extremely low external and internal mass trans-
er resistances (St = 106, Bi = 0.1) as well as for very large external
100 100 100 10 0.125 0.125

a HETP calculated from Eq. (13).
b HETP estimated from peaks calculated with GR model.

and internal mass transfer resistances (St = Bi = 100), for fast and
slow adsorption kinetic, and for large and low dispersion, the cal-
culated with both method HETPs are identical, what confirms the
correctness of Eq. (13).

4.2. The optimal solid core radius – analytical chromatography

4.2.1. One component chromatography
It is well known that for the totally porous adsorbent and

the instantaneous adsorption–desorption kinetic the HETP reaches
minimum value when the solid core radius approaches the particle
radius [10,12]. However, for finite adsorption rate the maximum
column efficiency can be obtained for � < 1, what was shown by Li
et al. [11]. Li et al. analyzed column efficiency for shell adsorbent
only in the case of Henry constant H � 1. In the following the results
of the investigation of the column efficiency for any Henry constant
is presented.

The minimum value of HPLC as a function of � can be easily found
using program Maple (Waterloo Maple Inc.) with help of function
“minimize” implemented in this program. In this work the program
Maple 13 was used. The optimum value of � was searched in the
interval (0-0.97). The reason of the restriction of this interval to
� < 0.97 is explained in the next section. All simulation were per-
formed for εp = εe = 0.4. Values of other parameters are given in the
captions to the figures.

In Fig. 1 the optimal solid core radius for the given Thiele mod-
ulus and Henry constant are presented for: (a) extremely low
external and internal mass transfer resistances and dispersion, and
(b) extremely high external and internal mass transfer resistances
and dispersion. In Fig. 1c. the relative value of RHETP versus ˚ and
H, for high mass transfer resistances is illustrated. The RHETP is
a ratio of HETP calculated for optimal solid core radius to HETP
calculated for totally porous adsorbent.

From simulations performed for very low mass transfer resis-
tances follows that for H < 1.9 and any ˚ value, or for ˚ greater than
about 30, the optimal value of the active shell thickness decreases to
zero. For H greater than about 50 and ˚ lower than 2, the column
effectiveness reaches maximum for the totally porous adsorbent
particle. For very low mass transfer resistances the minimum value
of HETP for the shell adsorbent is no more than few percent smaller
than HETP calculated for totally porous adsorbent.

Similar results were obtained for very high mass transfer resis-
tances: for H < 2.2 and any ˚ value, or for ˚ greater than 45, the
optimal value of active shell thickness decreases to zero. For H
greater than about 25 and ˚ lower than 2.3, the column effective-
ness reaches maximum for the totally porous adsorbent particle.
However, for high mass transfer resistances the HETP of the totally
porous adsorbent can be several times greater than that obtained
for an optimal core radius – see Fig. 1c). The effectiveness of shell
adsorbent strongly increases with the adsorption rate (Thiele mod-

ulus) increase.

To sum up, it is evident that mass transfer resistances and dis-
persion do not influence considerably the position of optimal shell
thickness. However, it should be noted, that with increasing mass
transfer resistances (St decrease, Bi increase) the region with the
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Fig. 1. The dependency of the optimal solid core radius (a), (b), and RHETP (c) on
T
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f
d
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a
V

hiele modulus and Henry constant. (a) Pe = 105, St = 106, Bi = 0.1. (b) and (c) Pe = 100,
t = 100, Bi = 103.

ptimal � value between 0 and 0.97 is wider, especially for a lower
alue of the Henry constant. The application of the shell adsorbent
s favorable mainly for low Biot number and fast adsorption kinetic.

The calculation presented above, for optimal � value were per-
ormed assuming that � < 0.97. It is instructive to analyze the

ependency of HETP versus dimensionless solid core radius � –
ee Fig. 2. The calculations were performed for typical value of St
nd Pe numbers for contemporary columns, Pe = 50,000, St = 10,000.
alue of other parameters are: Bi = 1000, ˚ = 10.
Fig. 2. The dependency of HETP on dimensionless solid core radius. H = 4, 8, 16, 32,
64 from bottom.

The curves HETP = f(�) have in a general case two extremes: the
local maximum near � = 1 and the local minimum. The maximum
value of HETP can be even several times greater than its value in
the local minimum. The local minimum is the more shifted towards
smaller � values the higher Henry constant is and the smaller Thiele
modulus. Moreover, the local minimum is more expressive for
larger Biot number (larger internal mass transfer resistances). The
global minimum is always for � approaching 1. However, infinitely
low thickness of active layer is rather impractical because of the
extremely low adsorbent capacities, so in previous calculation the
optimal value of solid core was searched in the interval from 0 to
0.97.

4.2.2. Two component chromatography – the resolution of two
component

In the previous section the optimal values of the adsorbent solid
core radius, for which the HETP reaches minimum, were estimated.
However, the most important measure of a chromatographic sep-
aration power is resolution, Rs, between different compounds.

The resolution, Rs, of two compounds can be calculated from the
first and second moments of the chromatographic peaks as:

RS = |�1a − �1b|
2
(√

�′
2a +

√
�′

2b

) (16)

where a and b denote component a or b.
From Eq. (16) follows that resolution depends not only on col-

umn efficiency expressed by second moments, but also on the
difference between the retention times of the compounds depicted
by first moments.

To scrutinize the influence on Thiele modulus, Biot number and
Henry constant on the optimal solid core radius for which the
resolution is maximal, it is convenient to introduce the relative res-
olution factor, RR, as the ratio of the resolution factor Rs for shell
adsorbent to the resolution factor of totally porous adsorbent. In
the calculations the Peclet and Stanton numbers were assumed to
be equal: Pe = 50,000 and St = 10,000.

In Fig. 3a and b the dependency of the optimal � value and rela-
tive resolution factor, RR, on Biot and Thiele modulus is presented.
The Ha was equal to 3 and Hb was equal to 3.5. The same depen-

dencies are presented in Fig. 4a and b but Ha = 3000 and Hb = 3500,
values observed for strongly adsorbed proteins.

From analysis of presented figures and other not presented
results of calculation follows that:
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ig. 3. The dependency of the optimal � value (a) and relative resolution factor, RR,
b) on Biot and Thiele modulus. Ha = 3.0 and Hb = 3.5.

the relative resolution always decreases to zero for � increasing
to one;
the optimal solid core radius is shifted towards higher values
when Thiele modulus or Biot number is increasing, however for
very high Henry constant the position of optimal � value almost
does not depend on Biot number;
the maximum value of the relative resolution and optimal � value
slightly depends on the Stanton number;
the maximum value of relative resolution is generally increas-
ing when Biot, Thiele modulus and Henry constant are increasing
(keeping Hb/Ha = const).

In Fig. 5 the calculated optimal solid core radius, �, and the
elative resolution factor, RR, obtained for optimal radius as a func-
ion of the Biot number and the Henry constant were presented.
he Henry constant for component “b” was equal Hb = 1.2·Ha. The
alculations were performed for instantaneous adsorption process
˚ = ∞).

As can be seen, for Bi and H less than about 5, the opti-
al � value is less than about 0.7 and the relative resolution

actor is less than 1.1. For Biot less than 1 the RR factor can
e less than one (see Fig. 6), which means that application

f shell adsorbent in this case has negative impact on the
esolution.

The application of shell adsorbents is the more attractive the
reater are Biot number and Henry constant. However, for Bi > 10
nd ˚ > 10 the optimal shell thickness should be very thin, less than
Fig. 4. The dependency of the optimal � value (a) and relative resolution factor, RR,
(b) on Biot and Thiele modulus. Ha = 3000 and Hb = 3500.

0.1 of the adsorbent diameter. For strongly adsorbed proteins the
shell thickness should be about 0.02 of the adsorbent diameter.

4.3. The optimal solid core radius – preparative chromatography

In the last section it was proven that optimal solid core radius,
�, for which the resolution Rs reaches maximum value depends
mainly on Bi, ˚, and H variables. For given criteria numbers it is very
easy to find optimal � value by plotting Eq. (16). This section tries to
answer the following question: does the value of � close to optimal
solid core radius guarantees maximum productivity in prepara-
tive chromatography. If so, the tedious and long optimization of
preparative separation could be considerably shortened.

Practically it is impossible to perform above mentioned ana-
lyzes for any possible values of criteria numbers, any isotherms and
any isotherms parameters. Only the exemplary analyze was done
for the Langmuir kinetic adsorption process and following crite-
ria numbers: Pe = 50,000, St = 10,000, Bi = 1000, Fi = 10, Ha = 4, Hb = 6,
Qs = 20, Cr = 1, yf ≤ 30 for nonlinear adsorption kinetic. Eq. (5a) was
replaced by an appropriate two component Langmuir kinetic for
both species (a) and (b).

The objective function, OF, used in this work is the product of

the productivity, Pr, and the recovery yield, Y:

OF = PriYi = CfitpuYi

�tc
Yi = u

Cryfi�pYi

��c
Yi (17)
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a

b

Fig. 5. The dependency of the optimal � value (a) and relative resolution factor, RR,
(b) on Biot and Henry constants Ha and Hb = 1.2·Ha . The calculation performed for
instantaneous adsorption process (˚ = ∞).

F
S

w
t
t
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T

ig. 6. Relative resolution versus dimensionless solid core radius. Pe = 50,000,
t = 10,000, Bi = 0.1, ˚ = 1, bottom line, ˚ ≥ 10 upper line, Ha = 3, Hb = 3.5.

here Pri is the mass of the key product i collected during the cycle
ime �tc, Yi is the yield defined as the fraction of the component
hat is recovered in the purified fraction product, and �tc is the
uration of a production cycle, between two successive injections.

onstructed in this way, the OF function assures high values of the
roductivity and the yield, enabling a reasonable cost of purification
f the final product.

The optimization of the product Pr·Y with GR model is very long.
he computation can by much shorter using ED model or LKM.
A 1218 (2011) 951–958

The LKM consist of Eq. (9) and Eq. (5a) assuming the Langmuir
kinetic model. In Eq. (5) the yp should be replaced by y. For very low
concentration the Eq. (5a) simplifies to model (5b). The ED model
consist of Eq. (9) and Langmuir isotherm or linear isotherm.

The solution of GR model and LKM ((Eq. (9)) and (Eq. (5b))) are
identical (see Fig. 7 – Gaussian band profile) when the effective
dispersion coefficient is calculated from Eq. (18):

Da = DLεe

εt
+

(
k1

1 + k1

)2 u2Re

εtεeF ′3

×
[

Re

5Deff

1 + 2� + 3�2 − �3 − 5�4

(1 + � + �2)
+ 1

kext

]
(18)

The solution of the GR model and the Ed model ((Eq. (9)) and
linear isotherm) are also identical (see Fig. 7 Gaussian band pro-
file) when the effective dispersion coefficient is calculated from Eq.
(18a):

Da = DLεe

εt
+

(
k1

1 + k1

)2 u2Re

εtεeF ′3

[
Re

5Deff

1 + 2� + 3�2 − �3 − 5�4

(1 + � + �2)

+ 1
kext

+ 1
(1 − εp)(1 − �3)

(
kp

1 + kp

)2
1

k′
ads

]
(18a)

The Eqs. (18) and (18a) can be developed after the application
of the same mathematical manipulation as discussed in [24] for
totally porous adsorbent.

In dimensionless form Eqs. (18) and (18a) reads:

1
Pea

= 1
Pe

εe

εt
+ εe

εtF ′

(
k1

1 + k1

)2

×
[

1
St

+ Bi

5St

(
1 + 2� + 3�2 − �3 − 5�4

(1 + � + �2)2

)]
(19)

1
Pea

= 1
Pe

εe

εt
+ εe

εtF ′

(
k1

1 + k1

)2 [
1
St

+ Bi

5St

(
1 + 2� + 3�2 − �3 − 5�4

(1 + � + �2)2

)

+ 1
(1 − εp)(1 − �3)

(
kp

1 + kp

)2
3Bi

St˚2

]
(19a)

It should be noted that the term with adsorption kinetic rate
was omitted in Eqs. (18) and (19), because dispersion due to slow
kinetic is taken into account by Eq. (5b).

In the case of the nonlinear kinetic model (Eq. (5a)) or the non-
linear isotherm model the Henry constant in Eqs. (12a) should be
replaced by a local isotherm slope [24]. The comparison of the peak
profiles calculated with GR (solid line), LKM (dotted line) for Lang-
muir adsorption–desorption kinetic and ED model (dashed line)
for the Langmuir isotherm are presented in Fig. 7. For the nonlinear
kinetic the band profiles obtained with the GR model or LKM are
slightly different, however the beginning and the end of these peaks
are at the same time. The solution with the ED model approximates
the peak calculated with the GR model considerably poorer, how-
ever, also in this case, the beginning and the end of these peaks
overlap each other. The CPU time needed for solution of the ED
model is much shorter than the time needed to solve the LKM, so

the initial step of optimization should be done with the ED model.

In the following the optimal solid core radius, for which the
objective function reaches maximum, was estimated using the LKM
model. In the calculations it was assumed that u = 1 cm/min and the
product purity equals 0.01. The optimized parameters were: inlet
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Fig. 7. Comparison of the peak profiles calculated with GR (solid line), LMK (dot-
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ed line) and ED model (dashed line) for linear (Gaussian peak) and Langmuir
dsorption–desorption kinetic (or Langmuir isotherm for ED model). Calculations
ere done for: Pe = 50,000, St = 10,000, Bi = 1000, Fi = 10, � = 0.8, H = 4, Qs = 20, Cr = 1

nd yf = 30.

pecies concentration, the same for both components, injection
ime and solid core radius.

For the optimization the hybrid of simulated annealing and the
implex algorithm was applied [25,26].

For the given above model parameters and the linear adsorption
inetic, the optimal values of dimensionless solid core radius and
aximum value of relative resolutions was � = 0.802, RR = 1.27.
In the case of preparative chromatography the optimal core

adius, �prep, and the value of objective function were:
or first component: OF = 3.74 × 10−4, �p = 0.00675, yf = 24.1, � = 0.788

OF = 3.72 × 10−4, �p = 0.00553, yf = 29.8, assuming
� = 0.802

or second component: OF = 6.52 × 10−3, �p = 0.0124, yf = 30.0, � = 0.827
OF = 6.35 × 10−3, �p = 0.0138, yf = 29.9, assuming
� = 0.802

Very similar �prep values were obtained for Qs = 4.
As can be seen the optimal core radius in the preparative chro-

atography depends on the analyzed component and differs from
he core radius assuring maximum resolution, �res. For the first
omponent �prep < �res and for the second �prep > �res.

However, it should be noted that the maximum values for
bjective function differ only slightly from these values obtained
ssuming � = �res.

. Conclusions

In the work the analysis of the chromatographic column effi-
iency packed with the superficially porous particles and their
eparation power in analytical and preparative conditions was pre-
ented. The analysis of the column efficiency was based on the HETP
odel. The calculation encompassed a very high and low external

nd internal mass transfer resistances, low and large axial disper-
ion, very slow and fast adsorption kinetic rate. It was found that
or low Henry constant and any adsorption kinetic rate or for the
hiele modulus greater than about 20, the shell thickness should
e as low as possible. For Henry constant greater than about 50 and

lower than 2, the column effectiveness reaches maximum value
or totally porous adsorbent particle. These conclusion is true for
ny practically achieved St, Bi and Pe numbers.
From analysis of the separation power of column packed with
hell particles follows that the resolution is increasing when Biot
umber, Thiele modulus and Henry constants for both components
re increasing (keeping ratio of Henry constants unchanged). The
ptimal solid core radius increases when adsorption rate increases.
A 1218 (2011) 951–958 957

This value slightly depends on the external mass transfer resis-
tances.

The highest relative resolution is achieved for instantaneous
adsorption desorption process, as should be expected. The reso-
lution is increasing when the Henry constant and the core radius
are increasing. However, for the Biot number and the Henry con-
stant less than about 5 the benefit of the application of the shell
adsorbent becomes negligible. For very low Biot number the reso-
lution obtained on shell adsorbent is lesser than on totally porous
adsorbent.

The obtained results can help in preparing shell adsorbent for
specific analytical separation.

The calculation of the optimal solid core radius for optimization
of preparative separation, for finite adsorption rate, requires large
numbers of solutions of mass transport equation. The time of the
calculation can be considerably shortened when instead of the GR
model the ED model or the LKM is used. The solution of the LKM or
the ED model is equivalent to solution of the GR model when appar-
ent dispersion is calculated from Eq. (18) or (18a), respectively.
However, the solution of ED model for nonlinear chromatography
is less accurate in comparison with the solution of LKM.

Nomenclature

Bi Biot number
C, Cp concentration in mobile phase or in the stagnant fluid

phase contained in the pores
Cr reference concentration
Deff effective particle diffusivity
Da apparent dispersion coefficient
DL axial dispersion coefficients
F′ phase ratio
H Henry constant
HETP height equivalent to theoretical plates
kads, kdes adsorption and desorption rate constant
kads

′ = kads*qs apparent adsorption rate constant
kext External mass transfer coefficient
L column length
Pe, Pea Peclet number or apparent Peclet number
q concentration in stationary phase
qs saturation capacity
Q dimensionless concentration in stationary phase
Qs dimensionless saturation capacity
r radial coordinate
R resolution factor
RR relative resolution factor
Ri radius of inert solid core
Re particle radius
St Stanton number
t time
u superficial velocity
Vm partial molar volume
x dimensionless axial coordinate
y, yp dimensionless concentration in mobile or in the stagnant

fluid phase in the pores
z axial coordinate

Greek symbol
εe external porosity
εt total column porosity

εp particle porosity
˚ Thiele modulus
�1 first absolute moment
�′

2 second central moment ratio of the radius of the inner
solid core, Ri, to the radius of the particle, Re



9 atogr.

�
�

S
f
0

R

[
[

[

[
[
[
[
[
[

[

[

[

[

[

[24] D. Antos, K. Kaczmarski, W. Piatkowski, A. Seidel-Morgenstern, J. Chromatogr.
58 K. Kaczmarski / J. Chrom

dimensionless time
p dimensionless time during the constant concentration is

fed into column

ubscripts
inlet value
initial value

eferences

[1] J. Kirkland, Anal. Chem. 41 (1969) 218.
[2] A. Cavazzini, F. Gritti, K. Kaczmarski, N. Marchetti, G. Guiochon, Anal. Chem. 79

(2007) 5972.
[3] J.J. DeStefano, T.J. Langlois, J.J. Kirkland, J. Chromatogr. Sci. 46 (2008) 254.
[4] F. Gritti, G. Guiochon, J. Chromatogr. A 1217 (2010) 1604.
[5] E. Kucera, J. Chromatogr. 19 (1965) 237.
[6] M. Kubin, Collect. Czech. Chem. Commun. 30 (1965) 1104.

[7] M. Kubin, Collect. Czech. Ghem. Comrnun. 30 (1965) 2900.
[8] J.A. Moulijn, J.F.M. Kolk, H.F.M. Reijnders, Ind. Eng. Chem. Fundam. 16 (1977)

301.
[9] K. Miyabe, G. Guiochon, J. Phys. Chem. 106 (2002) 8898.
10] K. Kaczmarski, G. Guiochon, Anal. Chem. 79 (2007) 4648.
11] P. Li, J. Yu, G. Xiu, A.E. Rodrigues, AIChE J. 56 (2010) 3091.

[

[

A 1218 (2011) 951–958

12] K. Horváth, F. Gritti, J.N. Fairchild, G. Guiochon, J. Chromatogr. A 1217 (2010)
6373.

13] P. Li, G. Xiu, A.E. Rodrigues, Chem. Eng. Sci. 59 (2004) 3091.
14] P. Li, G. Xiu, A.E. Rodrigues, AIChE J. 49 (2003) 2974.
15] P. Li, G. Xiu, A.E. Rodrigues, Chem. Eng. Sci. 58 (2003) 3361.
16] A.M. Rizzi, J. Chromatogr. 478 (1989) 71.
17] K.G. Gebreyohannes, V.L. McGuffin, J. Chromatogr. A 1217 (2010) 5901.
18] A. Puerta, A. Jaulmes, M. De Frutos, J.-C. Diez-Masa, C. Vidal-Madjar, J. Chro-

matogr. A 953 (2002) 17.
19] A. Puerta, C. Vidal-Madjar, A. Jaulmes, J.-C. Diez-Masa, M. de Frutos, J. Chro-

matogr. A 1119 (2006) 34.
20] K. Kaczmarski, D. Antos, H. Sajonz, P. Sajonz, G. Guiochon, J. Chromatogr. A 925

(2001) 1.
21] G. Guiochon, A. Felinger, A.M. Katti, D. Shirazi, Fundamentals of Preparative and

Nonlinear Chromatography, second ed., Elsevier, Amsterdam, 2006.
22] J. Villadsen, M.L. Michelsen, Solutions of Differential Equation Models by Poly-

nomial Approximation, Prentice-Hall, New York, 1978.
23] K. Kaczmarski, G. Storti, M. Mazzotti, M. Morbidelli, Comput. Chem. Eng. 21

(1997) 641.
A 1006 (2003) 61.
25] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes

in C. The Art of Scientific Computing, Cambridge University Press 1988, 1992,
2002.

26] K. Kaczmarski, D. Antos, Acta Chromatogr. 17 (2006) 20.


	On the optimization of the solid core radius of superficially porous particles for finite adsorption rate
	Introduction
	Mathematical models
	General Rate, Equilibrium Dispersive and Lumped Kinetic Model
	HETP of chromatographic columns packed with a shell adsorbent

	Data selected for theoretical calculations
	Results and discussion
	Validation of the HETP model
	The optimal solid core radius – analytical chromatography
	One component chromatography
	Two component chromatography – the resolution of two component

	The optimal solid core radius – preparative chromatography

	Conclusions
	Nomenclature
	References


